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Abstract
We show that the on-site spins of localized and itinerant electrons in the
double-exchange model are misaligned when the on-site Coulomb repulsion
is large enough. To explore this phenomenon we use the Schwinger-boson
representation of the localized spins and introduce two spin-singlet fermion
operators. In terms of the new Fermi fields, the on-site Hund’s interaction is
in a diagonal form and the true magnons of the system are identified. The
singlet fermions can be understood as electrons dressed by a cloud of repeatedly
emitted and reabsorbed magnons. The quantum phase transition between
ferromagnetism and the new phase is studied by varying the Coulomb repulsion
for different values of parameters in the theory such as the Hund’s coupling and
chemical potential.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spin-fermion model describes materials which get their magnetic properties from a system
of localized magnetic moments being coupled to conducting electrons. The model is known
as an s–d (or s–f) model, in which the electrons are separated into delocalized s electrons
and localized d(f) electrons. The names of the s and d(f) electrons do not necessarily mean
that the orbital electron states are of corresponding type. They are introduced to distinguish
the localized from delocalized electrons. The model appears in the literature also as the
ferromagnetic Kondo lattice model (FKLM) or the double-exchange model (DEM) [1–7].

The double-exchange model is a widely used model for manganites [1, 8]. In isolation, the
ions of Mn have an active 3d shell with five degenerate levels. The degeneracy is presented due
to rotational invariance within angular momentum l = 2 subspace. The crystal environment
results in a particular splitting of the five d orbitals (crystal field splitting) into two groups: the
eg and t2g states. The electrons from the eg sector, which form a doublet, are removed upon hole
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doping. The t2g electrons, which form a triplet, are not affected by doping, and their population
remains constant. The Hund rule enforces alignment of the three t2g spins into a S = 3/2 state.
Then, the t2g sector can be replaced by a localized spin at each manganese ion, reducing the
complexity of the original five-orbital model. The next drastic simplification is that only one
eg orbital is available at each site. To justify this one can assume [8] that a static Jahn–Teller
distortion leads to a splitting of the degenerate eg levels, allowing one to keep only one active
orbital. The only important interaction between the two sectors is the Hund coupling between
localized t2g spins and mobile eg electrons.

The double-exchange model has a rich phase diagram, exhibiting a variety of phases,
with unusual ordering in the ground states. The procedures followed to obtain the
phase diagram are different: numerical studies [9], dynamical mean field theory [10],
and analytical calculations [11, 12]; but four phases have been systematically observed:
(i) antiferromagnetism (AF) at a density of mobile electrons n = 1, (ii) ferromagnetism (FM),
(iii) phase separation (PS) between FM and AF phases, and (iv) spin incommensurable (IC)
phase. The competition between spin spiral incommensurate order or phase separation and
canted ferromagnetism is also a topic of intensive study [11–13]. The phase diagram becomes
more rich if the orbital degeneracy is accounted for [14].

The simplest but realistic Hamiltonian for the double-exchange model has the form

H = −t
∑

〈i j〉

(
c†

iσ c jσ + h.c.
)

− JH

∑

i

Si · si (1)

where c†
iσ and ciσ are creation and destruction operators for mobile electrons, sμi =

1
2

∑
σσ ′ c†

iσ τ
μ

σσ ′ciσ ′ , with the Pauli matrices (τ x , τ y, τ z), is the spin of the conduction electrons,
and Si is the spin of the localized electrons. The sums are over all sites of a three-dimensional
cubic lattice, and 〈i, j〉 denotes the sum over the nearest neighbours. In equation (1) the hopping
amplitude and the Hund coupling between localized and mobile electrons are positive.

The Hamiltonian (1) of the DEM is quadratic with respect to the fermions (c†
iσ , ciσ ).

Averaging in the subspace of the itinerant electrons, one obtains an effective Heisenberg-
like model in terms of core spins Si [15]. In the small-JH limit, Ruderman–Kittel–Kasuya–
Yosida (RKKY) theory is recovered. The subtle point is that if we use a Holstein–Primakoff
representation for the localized spins Si , the creation and annihilation Bose operators do not
describe the true magnon of the system [16]. The true magnons are transversal fluctuations
corresponding to the total magnetization which includes both the spins of localized and
delocalized electrons. Therefore the RKKY validity condition requires not only small Hund’s
coupling, but it also requires the charge carrier density to be small, which in turn means that
the magnetization of the mobile electrons is inessential.

An attempt to introduce the ‘true magnon’ is achieved in [17] and [18]. The effective
Hamiltonians, and the bosonic (magnon) and fermionic sectors are constructed in S− 1

2

expansion up to the fourth order. Only the quadratic part in the Hund’s term is kept. The
four-fermion terms of order 1

S are dropped.
Since the only interaction between localized and delocalized electrons is the Hund

coupling, it is desirable to treat the on-site term in the Hamiltonian (1) exactly. To realize
this we introduce two spin-singlet Fermi fields. Originally they were introduced in [19] to
explore the double-exchange model and in [20] in the context of the t–J model. In terms of the
singlet Fermi fields the Hund’s term is in a diagonal form, the spin variables are removed, and
one can treat it exactly [21]. An analogous technique is used in [12].

A more realistic DEM would account for the on-site Coulomb repulsion. The Coulomb
(Hubbard) interaction has a profound effect on the band structure, magnetic ground state
(magnetic configurations), and transport properties of spin-fermion systems. The results of
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Figure 1. Sketch of two sublattice spin-canted states: (a) canted antiferromagnetism, (b) canted
ferromagnetism.

the electron–electron repulsion depend on parameters in the theory such as doping, band
width, and temperature. While some effects of the Hubbard term have been addressed in the
past by means of mean-field theory [22–24], local spin-density approximation (LSDA) and
LSDA + U calculations [25], and dynamical mean-field theory [26], its impact has not been
fully appreciated so far.

In the present paper we study canted ferromagnetism in the double-exchange model with
on-site Coulomb repulsion. Usually the canted magnetism is considered as a two-sublattice spin
configuration with neighbouring lattice spins misaligned by an angle θ (figure 1). de Gennes
first observed that in the double-exchange model a spin-canted state interpolates between
ferromagnetic and antiferromagnetic order [27]. The canted phase is a part of the phase diagram
of the mixed-spin (S1 > S2)J1 − J2 Heisenberg model on a square lattice [28]. Finally, a canted
phase appears in the lattice models of quantum rotors [29].

In the present paper we show that ferromagnetism with on-site spins of localized and
delocalized electrons misaligned (figure 2) emerges in the double-exchange model when
the Coulomb repulsion is large enough. We study the quantum phase transition between
ferromagnetic and on-site canted orders when the Coulomb repulsion is varied for different
values of parameters in the theory such as the Hund’s coupling and chemical potential.

The paper is organized as follows. In section 2 we study the double-exchange model (1)
supplemented with an antiferromagnetic Heisenberg interaction between nearest-neighbour
core spins. The Schwinger-boson representation of the localized spins is used and two spin-
singlet fermion operators are introduced. In terms of the new Fermi fields the on-site Hund’s
interaction is in a diagonal form and the true magnons of the system are identified. The
singlet fermions can be understood as electrons dressed by a cloud of repeatedly emitted
and reabsorbed magnons. On integration over the singlet fermions, we obtain an effective
Heisenberg-like theory. Positivity of the spin-stiffness, as a function of Hund’s coupling JH

and charge carrier density, is the condition for stable ferromagnetism. The phase boundary
is depicted in the case of both zero and non-zero antiferromagnetic exchange. Section 3 is

3
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Figure 2. Sketch of on-site spin-canted states: (a) when JH > 0, (b) when JH < 0.

devoted to the on-site canted ferromagnetism in the DEM with on-site Coulomb repulsion.
The theory rewritten in terms of Schwinger-bosons and spin-singlet fermions is a U(1) gauge-
invariant theory. We show that the on-site canted state is a state with spontaneously broken
gauge symmetry. The quantum phase transition between ferromagnetism and the canted phase
is studied by varying the parameters in the theory. A summary in section 4 concludes the paper.

2. Magnons in the double-exchange model

We consider a theory with the Hamiltonian

h = H − μN = −t
∑

〈i j〉

(
c†

iσ c jσ + h.c.
)

− μ
∑

i

ni + JAF

∑

〈i j〉
Si · S j − JH

∑

i

Si · si (2)

where μ is the chemical potential, and ni = c†
iσ ciσ . The antiferromagnetic Heisenberg term

(JAF > 0) is very important for the manganites. In the limit when all eg electrons are removed,
and the system is without mobile electrons, the t2g electrons induce an antiferromagnetic
Heisenberg exchange between nearest neighbours, leading to standard antiferromagnetism. The
most prominent example is CaMnO3 [8].

In terms of Schwinger-bosons (ϕi,σ , ϕ
†
i,σ ) the spin operators have the following

representation:

�Si = 1
2ϕ

†
iσ �τσσ ′ϕiσ ′, ϕ

†
iσ ϕiσ = 2S. (3)

The partition function can be written as a path integral over the complex functions of the
Matsubara time ϕiσ (τ ) (ϕ

†
iσ (τ )) and Grassmann functions ciσ (τ ) (c

†
iσ (τ )).

Z(β) =
∫

dμ
(
ϕ†, ϕ, c†, c

)
e−A (4)

4
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with an action given by the expression

A =
∫ β

0
dτ

[
∑

i

(
ϕ

†
iσ (τ )ϕ̇iσ (τ )+ c†

i (τ )ċi(τ )
)

+ h(ϕ†, ϕ, c†, c)

]
, (5)

where β is the inverse temperature and the Hamiltonian is obtained from equations (2) and (3)
by replacing the operators with the functions. In terms of Schwinger-bosons the theory is
invariant under U(1) gauge transformations

ϕ′
jσ (τ ) = eiα j (τ )ϕ jσ (τ ); ϕ

′†
jσ (τ ) = e−iα j (τ )ϕ

†
jσ (τ ) (6)

with parameters which are period functions of Matsubara time α j (0) = α j (β). The measure
for the Schwinger-bosons includes Dirac-δ functions that enforce the constraint (3):

Dμ(ϕ†, ϕ) =
∏

i,τ,σ

Dϕ†
iσ (τ )Dϕiσ (τ )

2π i
×

∏

iτ

δ
(
ϕ

†
iσ (τ )ϕiσ (τ )− 2S

)
. (7)

We introduce two spin-singlet Fermi fields


A
i (τ ) = 1√

2S
ϕ

†
iσ (τ )ciσ (τ ), (8)


B
i (τ ) = 1√

2S
[ϕi1(τ )ci2(τ )− ϕi2(τ )ci1(τ )] , (9)

which are gauge variant with charge −1 and 1 respectively:


 ′A
j (τ ) = e−iα j (τ )
A

j (τ ), 
 ′B
j (τ ) = eiα j (τ )
B

j (τ ). (10)

The equations (8) and (9) can be regarded as an SU(2) transformation:


iσ = g†
iσσ ′ciσ ′ ⇒ g†

i = 1√
2S

(
ϕ

†
i1 ϕ

†
i2−ϕi2 ϕi1

)
(11)

with
A
i = 
1i and
B

i = 
2i . For that reason the Fermi measure is invariant under the change
of variables. In terms of the spin-singlet Fermi fields the spin of the conduction electrons si has
the form

sμi = 1
2 c†

iσ τ
μ

σσ ′c
†
iσ ′ = 1

2 Oμν

i 

†
iσ τ

ν
σσ ′
iσ ′, (12)

where

Oμν

i = 1
2 Tr g†

i τ
μgiτ

ν. (13)

It is convenient to introduce three basic vectors which depend on the Schwinger-bosons:

T 1
iμ = Oμ1

i T 2
iμ = Oμ2

i T 3
iμ = Oμ3

i , (14)

where T3
i = 1

S Si . Then, the spin of the electrons can be represented as a linear combination of

three vectors S j , P j = T1
j + iT2

j and P†
j = T1

j − iT2
j :

si = 1

2S
Si (


A†
i 
A

i − 

B†
i 


B
i )+ 1

2
Pi


B†
i 
A

i + 1

2
P†

i

A†
i 
B

i . (15)

The basic vectors satisfy the relations S2
i = S2, P2

i = P†2
i = Si · Pi = Si · P†

i = 0, and
P†

i · Pi = 2. Using the expression (15) for the spin of itinerant electrons, the total spin of the
system Stot

i = Si + si can be written in the form

Stot
i = 1

S

[
S + 1

2

(



A†
i 
A

i −

B†
i 
B

i

)]
Si + 1

2
Pi


B†
i 
A

i + 1

2
P†

i

A†
i 
B

i . (16)

5
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The gauge invariance imposes the conditions 〈
A†
i 
B

i 〉 = 〈
B†
i 
A

i 〉 = 0. As a result, the
dimensionless magnetization per lattice site M = 〈(Stot

i )
z〉 reads

M = 1

S

[
S + 1

2

〈(



A†
i 
A

i −

B†
i 
B

i

)〉]
〈Sz

i 〉. (17)

At zero temperature 〈Sz
i 〉 = S and M = S + m, where

m = 1
2

〈(



A†
i 
A

i −

B†
i 
B

i

)〉
(18)

is the contribution of the itinerant electrons.
Let us average the total spin of the system (equation (16)) in the subspace of the itinerant

electrons 〈Stot
i 〉f = Mi . In the path integral formalism this means integrating over the fermions.

Then, the vector Mi (M2
i = M2) identifies the local orientation of the total magnetization.

Accounting for the gauge invariance, one obtains an expression for Mi in terms of core spins Si :

〈Stot
i 〉f = Mi = M

S
Si . (19)

Now, if we use the Holstein–Primakoff representation for the vectors M j ,

M+
j = M j1 + iM j2 =

√
2M − a†

j a j a j

M−
j = M j1 − iM j2 = a†

j

√
2M − a†

j a j

M3
j = M − a†

j a j

(20)

the Bose fields a j and a†
j are the true magnons in the system. In terms of the true magnons the

Schwinger-bosons (3) have the following representation:

ϕi1 =
√

2S − S

M
a†

i ai , ϕi2 =
√

S

M
ai . (21)

Replacing the Schwinger-bosons in equations (8) and (9) for the spin-singlet fermions and

keeping only the first two terms in 1/M expansion
√

1 − 1
2M a†

i ai � 1 − 1
4M a†

i ai + · · ·, we
obtain


A
i = ci1 + 1√

2M
a†

i ci2 − 1

4M
a†

i ai ci1 + · · · , (22)


B
i = ci2 − 1√

2M
ai ci1 − 1

4M
a†

i ai ci2 + · · · . (23)

The equations (22) and (23) show that the singlet fermions are electrons dressed by a virtual
cloud of repeatedly emitted and reabsorbed magnons.

An important advantage of working with A and B fermions is the fact that in terms of
these spin-singlet fields the spin-fermion interaction is in a diagonal form, the spin variables
(magnons) are removed, and one accounts for it exactly:

∑

i

Si · si = S

2

∑

i

[
A†
i 
A

i −

B†
i 
B

i ]. (24)

To proceed we rewrite the action (5) as a function of Schwinger-bosons and spin-singlet
fermions:

A =
∫ β

0
dτ

[
ϕ

†
iσ ϕ̇iσ +


A†
i

(
∂

∂τ
+ 1

2S
ϕ+

iσ ϕ̇iσ

)

A

i +

B†
i

(
∂

∂τ
− 1

2S
ϕ

†
iσ ϕ̇iσ

)

B

i

+ 1

2S

(
−ϕ†

i1ϕ̇
†
i2 + ϕ

†
i2ϕ̇

†
i1

)



A†
i 
B

i + 1

2S
(−ϕi2ϕ̇i1 + ϕi1ϕ̇i2)


B†
i 
A

i

+ h
(
ϕ†, ϕ,
†,


)
]
. (25)

6
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It is convenient to write the Hamiltonian h(ϕ†, ϕ,
†,
) as a sum of three terms

h = hf + hH + hint, (26)

where hf is the free A and B fermions’ Hamiltonian,

hf = −t
∑

〈i j〉

(



†
iσ
 jσ + h.c.

)
− μ

∑

i



†
iσ
iσ − JHS

2

∑

i

(



A†
i 
A

i − 
+B
i 
B

i

)
, (27)

hH is the Hamiltonian of the Heisenberg theory of antiferromagnetism (2), and hint is the
Hamiltonian of magnon–fermion interaction,

hint = −t
∑

〈i j〉

[ [
1

2S

(
ϕ

†
iσ ϕ jσ − 2S

)



†
iσ ′
 jσ ′ + h.c.

]

+
[

1

2S

(
ϕ

†
i1ϕ

†
j2 − ϕ

†
j1ϕ

†
i2

) (



A†
j 


B
i −


A†
i 
B

j

)
+ h.c.

]]
. (28)

The action (25) is quadratic with respect to the spin-singlet fermions and one can integrate
them out. We can accomplish this by first using the representation (21) of the Schwinger-
bosons, then keeping only the quadratic terms with respect to the magnons, and finally
calculating the diagrams in the leading order of gradient expansion. The action of the effective
theory, in Gaussian approximation, is

Aeff =
∫ β

0
dτ

[
a†

i ȧi + M J
∑

〈i j〉

(
a†

i ai + a†
j a j − a†

i a j − a†
j ai

)]
, (29)

where M is the dimensionless magnetization per lattice site (equation (17)) at zero temperature,
and J is the effective exchange coupling:

J = − S2

M2
JAF + t

6M2

∫ π

−π

∫ π

−π

∫ π

−π
d3k

(2π)3

(
3∑

μ=1

cos kμ

)
(
nA

k + nB
k

)

− 2t2

3M2 JHS

∫ π

−π

∫ π

−π

∫ π

−π
d3k

(2π)3

(
3∑

μ=1

sin2 kμ

)
(
nA

k − nB
k

)
. (30)

In equation (30), nR
k = θ(−εR

k ) (R = A, B) are the occupation numbers for the A and B
fermions with dispersions

εA
k = −2t

(
cos kx + cos ky + cos kz

) − μ− JHS

2

εB
k = −2t

(
cos kx + cos ky + cos kz

) − μ+ JHS

2
.

(31)

The first term in equation (30) comes from ‘tadpole’ diagrams with one A or B fermion line with
vertices which relate to the first term in the Hamiltonian of interaction (28). The second term is
obtained calculating the one-loop diagrams with A and B fermion lines, and with vertices which
relate to the second term in hint. The term with time derivative in the effective action (29) is
obtained by summing two terms. The first one is the term with time derivative in the action (25)
which in terms of magnons has the form

∫ β
0 dτ S

M a†
i ȧi , while the second results from ‘tadpole’

diagrams with vertices related to the second and third terms of the action (25).
Based on the rotational symmetry, one supplements the action (29) up to an effective

Heisenberg-like action, written in terms of the vectors Mi :

Heff = −J
∑

〈i j〉
Mi · M j . (32)

7
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Figure 3. Phase diagrams when (a) JAF = 0 and (b) JAF
W = 0.1.

The ferromagnetic phase is stable if the effective exchange coupling constant is positive,
J > 0. The dimensionless constant J/W , where W = 12t is the band width, depends on
JAF/W, JHS/W and μ/2t . The ( JHS

W , n) phase diagram, where n is the carrier density, is
depicted in figure 3 for JAF = 0 and JAF

W = 0.1.
The phase diagram shown in figure 3(a) (JAF = 0) is in a good agreement with phase

diagrams obtained numerically [9] and by means of alternative analytical calculations [12].
Phase diagram figure 3(b) shows that direct antiferromagnetic exchange suppresses the
ferromagnetism at small values of carrier concentrations, which is a well known experimental
fact for manganites [8].

3. Canted ferromagnetism

After considering the pure double-exchange model, let us address the double-exchange model
supplemented with on-site Coulomb repulsion (Hubbard term).

h = H − μN = −t
∑

〈i j〉

(
c†

iσ c jσ + h.c.
)

− JH

∑

i

Si · si + U
∑

i

ni↑ni↓ − μ
∑

i

ni , (33)

where niσ = c†
iσ ciσ . Our purpose is to show that canted ferromagnetism, with on-site spins of

localized and delocalized electrons misaligned, emerges in the double-exchange model when
the Coulomb repulsion is large enough.

Let us average the spin of the electrons (equation (15)) in the subspace of the itinerant
electrons. We obtain, as a consequence of gauge invariance, that the spins of electrons are
parallel to the localized spins 〈si 〉f = m

S Si . The order parameter of the rotational symmetry
breaking is the vector 〈Stot

i 〉. In the ferromagnetic phase the spins of local and itinerant electrons
are parallel, the ground state is infinitely degenerated, and one can choose the order parameter
along the z-axis (〈Stot

3i 〉 �= 0). When the on-site spins are misaligned the order parameter has two
non-zero components: a component along the localized spin and a component perpendicular to
it. Equation (15) shows that the on-site spins are misaligned if 〈
A†

i 
B
i 〉 and 〈
B†

i 
A
i 〉 are not

equal to zero. To explore the on-site canted ferromagnetism we rewrite the Hamiltonian (33)

8
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in terms of Schwinger-bosons and spin-singlet fermions. In particular, one obtains for the
Hubbard term

∑

i

ni↑ni↓ = −
∑

i



A†
i 
B

i 

B†
i 
A

i . (34)

We decouple this term by means of the Hubbard–Stratanovich transformation, introducing the
complex field �i (�

†
i ), the projection of the order parameter on the plane perpendicular to the

localized spin.

eU
∫ β

0 dτ
∑

i 

A†
i (τ )
B

i (τ )

B†
i (τ )
A

i (τ ) =
∫

dμ(�†�) exp

[
−

∫ β

0
dτ

∑

i

[
�

†
i (τ )�i(τ )

U

+ 

A†
i (τ )
B

i (τ )�i(τ )+�
†
i (τ )


B†
i (τ )
A

i (τ )

]]
. (35)

Now, the partition function (4) can be represented as a path integral over the spin-singlet
fermions, Schwinger-bosons, and complex order parameter. The integral over the fermions
is Gaussian, and one can integrate them out. The resulting expression for the partition function
is an integral over the Schwinger-bosons, and complex order parameter.

Z(β) =
∫

dμ
(
ϕ†, ϕ,�†,�

)
e−W(ϕ†,ϕ,�†,�). (36)

We perform the integral over the collective variables �†
i and �i using the steepest descent

method. To this end, we set the spin fluctuation a†
i and ai (see equations (20), (21)) equal to

zero and assume that the mean-field value of the order parameter�i (τ ) is independent of τ and
lattice sites i real constant�. Then, the free energy of the system, in mean-field approximation,
is

F = �2

U
+ Ff, (37)

where Ff is the free energy of a Fermi system with Hamiltonian

hf =
∑

k

[εA
k 


A†
k 
A

k + εB
k


B†
k 
B

k +�(

A†
k 
B

k +

B†
k 
A

k )]. (38)

To write the Hamiltonian in diagonal form one introduces new Fermi fields ψa
k and ψb

k :


A
k = uψa

k + vψb
k , 
B

k = −vψa
k + uψb

k , (39)

where the coefficients are

u =
√√√√1

2

(
1 + JHS√

(JHS)2 + 4�2

)
,

v = (sign�)
√

1 − u2.

(40)

Then,

hf =
∑

k

[
εa

kψ
a+
k ψa

k + εb
kψ

b+
k ψb

k

]
. (41)

Here εa
k = ε−

k , ε
b
k = ε

†
k , where

ε±
k = εk ± 1

2

√
(JHS)2 + 4�2, (42)

9



J. Phys.: Condens. Matter 19 (2007) 156212 N Karchev and V Michev

0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

0.40

0.35

0.32

0.30

0.28 F
(c

os
 θ

)

Cos θ

0.25

0.23

Figure 4. Dimensionless mean-field free energy F = 6F/W , where W is the band width, as
a function of cos θ , where θ is the angle between the on-site spin of carrier and localized spin,
for JHS/W = 2.32, μ/W = −1.22, and W/U = 0.23; 0.25; 0.28; 0.30; 0.32; 0.35; 0.40 (U :
Coulomb repulsion).

and εk = −2t[cos(kx)+cos(ky)+cos(kz)]−μ. Now, we can obtain the mean-field expression
for the free energy. At zero temperature it is

F = �2

U
+

∫ π

−π

∫ π

−π

∫ π

−π
d3k

(2π)3
[
εa

k θ
(−εa

k

) + εb
kθ

(−εb
k

)]
. (43)

It is convenient to introduce the angle between the on-site spin of the carrier and the
localized spin:

cos� = Si · si

|Si ||si | . (44)

Using equation (15) for the spin of itinerant electrons, and the properties of the basic vectors,
one obtains

cos� =
[

1 + 4〈
A†
i 
B

i 〉〈
B†
i 
A

i 〉
〈
A†

i 
A
i −


B†
i 
B

i 〉

]− 1
2

. (45)

We calculate the matrix elements in the formula (45) in mean-field approximation applying the
transformation (39), (40). The result is

〈
A†
i 
A

i − 

B†
i 


B
i 〉 = JHS

(
na − nb

)
√
(JHS)2 + 4�2

〈
A†
i 
B

i 〉 = 〈
B†
i 
A

i 〉 = �
(
na − nb

)
√
(JHS)2 + 4�2

,

(46)
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Figure 5. Dimensionless mean-field free energy F = 6F/W , where W is the bandwidth, as a
function of cos θ , where θ is the angle between the on-site spin of carrier and localized spin, for
JH S/W = 0.95, μ/W = −5, and W/U = 0.30; 0.33; 0.36; 0.39; 0.42; 0.45; 0.48 (U : Coulomb
repulsion).

where na and nb are occupation numbers for ‘a’ and ‘b’ fermions introduced by the
transformation (39). After some algebra we arrive at the mean-field expression for the angle:

cos� = JHS√
(JHS)2 + 4�2

. (47)

Next, we replace � in equations (42) and (43) by cos� from equation (47) and rewrite the
mean-field free energy as a function of cos�. The dimensionless energy F = 6F/W is
depicted in figures 4–6 for different values of W/U and fixed JHS/W and μ/W . As the
graphs show, on increasing the Coulomb repulsion constant the system passes through a first-
order quantum phase transition. Red lines (0.28—figure 4, 0.33—figure 5, and 0.77—figure 6)
correspond to the critical values Uc of the Coulomb repulsion. The values Uc and �c depend
on the parameters of the theory such as Hund’s coupling constant, chemical potential and band
width. The character of the transition also depends on the parameters in the theory. We
see (figure 6) that when JHS/W = 0.50 and μ/W = −0.33 for small values of Coulomb
repulsion, W/U = 1.50, 1.10, the minimum of the free energy is at cos� = 1. Near the
quantum phase transition W/U = 0.77 the ground state is highly degenerated, while below this
critical value, for large enough U , the on-site canted ferromagnetic state, with cos� < 1, is the
ground state of the system. This could be an indication that near the quantum phase transition
phase separation interpolates between ferromagnetic and on-site canted ferromagnetic order.

4. Conclusions

We have argued that the on-site Coulomb repulsion strongly affects the magnetic properties of
spin-fermion systems. In particular, when the Coulomb repulsion is strong enough, the on-site

11
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Figure 6. Dimensionless mean-field free energy F = 6F/W , where W is the bandwidth, as a
function of cos θ , where θ is the angle between the on-site spin of carrier and localized spin, for
JH S/W = 0.50, μ/W = −0.33, and W/U = 0.32; 0.39; 0.48; 0.60; 0.77; 1.10; 1.50 (U :
Coulomb repulsion).

localized and carrier spins become misaligned (on-site canted ferromagnetic state). As follows
from equation (47), cos� > 0 when JN > 0 (see figure 2(a)), and cos� < 0 when JN < 0 (see
figure 2(b)). To obtain this result a double-exchange model with Hubbard term was considered.
We represented the localized spins by means of Schwinger-bosons and introduced two spin-
singlet fermion operators. In terms of the new Fermi fields the on-site Hund’s interaction is
in a diagonal form and the true magnons of the system can be recognized. Written in terms
of Schwinger-bosons and spin-singlet fermions, the theory is U(1) gauge invariant. We have
shown that the on-site canted ferromagnetic state is a state with spontaneously broken gauge
symmetry. This is because the order parameter is a gauge-varying collective field with charge
−2 (see equations (10) and (35)):

�′
j (τ ) = e−i2α j (τ )� j(τ ), (48)

and a non-zero expectation value 〈� j(τ )〉 �= 0 means spontaneous breakdown of the gauge
symmetry.

To study the Goldstone modes in the on-site canted ferromagnetic phase it is convenient to
represent the Schwinger-bosons and the order parameter in the form

ϕ j1 = eiφ j

√
2S − S

M
a†

j a j , ϕ j2 =
√

S

M
a j , � j = |� j |eiχ j . (49)

Then the new fields, a†
j , a j , φ j and χ j , transform under the gauge transformation in the

following way:

a′
j = eiα j a j , φ′

j = φ j + α j , χ ′
j = χ j − 2α j . (50)

12
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The theory is an U(1) gauge theory and we have to impose one gauge-fixing condition. Hence,
there are two Goldstone modes in the theory. For example, one can use φi = 0 as a gauge-
fixing condition (see equation (21)); then the Goldstone modes are the magnons ai (a

†
i ) and χi

phase. The physical origin of the extra mode is the totally broken rotation symmetry, while
the mathematical reason is the spontaneous breakdown of the gauge symmetry. Alternatively,
one can choose χi = 0 for the gauge fixing. Both these conditions are not convenient. In the
quadratic parts of the corresponding effective theories there are terms which mix magnons and
phases. These terms are an obstacle to recognizing the spectrum in the theory. One hopes that
there is a gauge-fixing condition which involves all gauge-varying fields and that the quadratic
terms of the effective theory take a diagonal form. This issue will be addressed elsewhere.

In conclusion, it is important to stress that misalignment of the on-site localized and carrier
spins is possible not only in the ferromagnetic phase. This is a characteristic feature of spin-
fermion systems and one can consider the on-site canted antiferromagnetism or the on-site
canted spiral phase if the theory parameters are appropriately chosen. The phase diagram which
complements the known diagram of the DEM in the presence of strong Coulomb repulsion will
be published elsewhere.
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